Interactional behavior of the polyelectrolyte poly sodium 4-styrene sulphonate (NaPSS) with imidazolium based surface active ionic liquids in an aqueous medium.
نویسندگان
چکیده
The present study aims to develop an understanding of the interactions between an anionic polyelectrolyte, poly sodium 4-styrene sulphonate (NaPSS), and cationic surface active imidazolium based ionic liquids (SAILs), [Cnmim][Cl] (n = 10, 12, 14) using a multi-technique approach. Various physicochemical and electrochemical techniques such as surface tension, conductivity, fluorescence, isothermal titration calorimetry (ITC), dynamic light scattering (DLS), turbidity, potentiometry, cyclic voltammetry (CV), and differential pulse voltammetry (DPV) are employed to obtain comprehensive information about NaPSS-SAIL interactions. Different stages of interaction, corresponding to the critical aggregation concentration (cac), critical saturation concentration (Cs) and critical micelle concentration (cmc) have been observed owing to the strong electrostatic and hydrophobic interactions, and the results obtained from different techniques complement each other very well. The results extracted from DLS and turbidity measurements clearly indicated that the size of the micelle like aggregates first decreases and then increases in the presence of polyelectrolyte. The binding isotherms obtained using potentiometry show a concentration dependence and the highly co-operative nature of the interactions which is attributed to aggregation of the polyelectrolyte-SAIL complexes. The diffusion coefficients (Dm) of the electroactive probe in the pure and NaPSS-SAIL mixed systems were obtained, which were further used to obtain the values of the micellar self-diffusion coefficients (D) and inter-micellar interaction parameters (kd).
منابع مشابه
Saloplastic Macroporous Polyelectrolyte Complexes: Cartilage Mimics
Complexes of sodium poly(4-styrenesulfonate) (NaPSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were formed on mixing equimolar solutions in high salt concentration. Under ultracentrifugal fields, the complex precipitates were transformed into compact polyelectrolyte complexes (CoPECs), which showed extensive porosity. The mechanical properties of CoPECS make them attractive for bioim...
متن کاملAggregation behavior and antimicrobial activity of ester-functionalized imidazolium- and pyridinium-based ionic liquids in aqueous solution.
Two series of long chain imidazolium- and pyridinium-based ionic liquids containing an ester functional group in the alkyl side chain, 3-methyl-1-alkyloxycarbonylmethylimidazolium bromides (C(n)EMeImBr) and 1-alkyloxycarbonylmethylpyridinium bromides (C(n)EPyrBr), were synthesized and their thermal stability, aggregation behavior in aqueous medium, and antimicrobial activity investigated. The i...
متن کاملImidazolium-based Ionic liquids on Morphology and Optical Properties of ZnO Nanostructures
ZnO nanostructures have been synthesized by a simple reflux method, using different ionic liquids, such as 1-benzyl-3-methylimidazolium bromide ([BzMIM][Br]), 1,1'-(1,4 phenylenebis (methylene)) bis (3-methyl-1H-imidazol-3-ium) bromide ([MM-1,4-DBzIM2][Br]2) and 1-phenacyl-3-methylimidazolium bromide ([PMIM][Br]), with different amount of sodium hydroxide in water. Als...
متن کاملBiphasic hydroformylation in ionic liquids: interaction between phosphane ligands and imidazolium triflate, toward an asymmetric process.
Biphasic hydroformylation of dec-1-ene and styrene, at commercially competitive rates, can be successfully performed in imidazolium triflate ionic liquids; the ionic liquid network forms 'inclusion complexes' with the phosphane ligands used to modify the rhodium catalyst.
متن کاملEffect of cationic head group on micellization behavior of new amide-functionalized surface active ionic liquids.
Amide-functionalized surface active ionic liquids (SAILs), 1-methyl-1-dodecyl piperidinium chloride, [C12APip][Cl]; 1-methyl-1-dodecyl pyrrolidinium chloride, [C12APyrr][Cl]; 1-methyl-3-dodecyl imidazolium chloride, [C12Amim][Cl], and 1-methyl-1-dodecyl morpholinium chloride, [C12AMorph][Cl], have been synthesized, characterized and investigated for thermal stability, and micellization behavior...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 36 شماره
صفحات -
تاریخ انتشار 2015